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Summary

Body mass plays an important role in shaping an individual’s behavior, especially with re-
spect to dietary behavior. Larger animals tend to consume higher quantities of low quality
foods. In contrast, smaller individuals, with relatively higher metabolic rates require a high
quality diet. Therefore, species that exhibit high amounts of sexual dimorphism in body mass
should also display high levels of male—female dietary differentiation. This study investigated
the relationship between body mass dimorphism and dietary sex differences for 38 primate
species. We conducted multiple regressions using female body mass and body mass dimor-
phism as independent variables. We found that body mass dimorphism was significantly neg-
atively correlated with male—female differences in fauna consumption using species values
as well as phylogenetically independent contrasts. In addition, body mass dimorphism was
positively related to male—female differences in percent time feeding using phylogenetically
independent contrasts. Body mass dimorphism was not significantly related to male—female
differences in the percent of fruit and leaves in the diet. The results suggest that, as body mass
dimorphism increases, there is some degree of dietary niche separation between the sexes of
primates. These results will be discussed in the context of existing studies of intersexual niche
separation.
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Introduction

Sex differences in feeding ecology have been observed in a variety of taxa
and may range from subtle variations in diet and feeding technique to more
extreme degrees of sexual segregation in terms of sociality and habitat use
(Clutton-Brock et al., 1987; duToit, 1995; Main et al., 1996; Thirgood, 1996;
Stokke, 1999). Such differences are most commonly attributed to three ma-
jor factors including (1) variation in costs of reproduction, (2) avoidance of
competition between the sexes and (3) differences in body size/mass (sex-
ual dimorphism) (Clutton-Brock, 1977). Among primates, sex differences
are often observed in both diet and feeding behavior (Gautier-Hion, 1980;
Harrison, 1983; Cords, 1986; Boinski, 1988; Mitani, 1989; Rose, 1994; Do-
ran, 1997), yet there does not appear to be consistency in terms of factors
driving these distinctions. In particular, despite the varying degrees of sexual
dimorphism throughout the primate order, the effect of body size in relation
to intraspecific differences is still uncertain. Moreover, studies that do cite
sexual dimorphism as an influence on primate feeding behavior are often re-
ferring specifically to effects of body size on positional behavior rather than
energetic and nutritional demands (Cant, 1987; Rose, 1994; Doran, 1997).

Sexual dimorphism is most often considered in reference to sexual selec-
tion, with large male body size being selected for due to competition among
males for access to females (Trivers, 1972; Plavcan & van Schaik, 1997). Yet
in addition to social implications, the resulting size difference is expected
to influence dietary characteristics. The influence of sexual dimorphism on
male—female ecological differences may result from the interplay between
morphology and access to dietary resources. Larger bodied individuals are
expected to be more constrained in terms of arboreal habitat use and are
often more terrestrial than smaller individuals who are more adept at ex-
ploiting terminal branches (Fleagle & Mittermeier, 1980; McGraw, 1998).
Masticatory morphology differences may also exist between small and large
individuals, particularly in terms of canine size, musculature, and gape, lead-
ing to differences in bite size and food choice (Wheatley, 1982; Ginnett &
Demment, 1997).

The importance of digestive morphology and body mass may also be
observed in the general energetic and nutritional requirements of an ani-
mal. While gut capacity/retention times increase with body size (Jarman,
1974), relative energetic requirements per unit mass decrease with body size
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(Bell, 1971; Geist, 1974). Therefore, larger bodied animals typically require
a higher absolute intake of resources, yet are able to subsist on a wider vari-
ety of lower quality items (Demment & van Soest, 1985). Smaller animals,
on the other hand, require more energy per unit mass and are, therefore,
expected to be more selective and feed on higher quality items. This rela-
tionship has been particularly well studied in large herbivores. These stud-
ies suggest that a level of sexual dimorphism of at least 20% will result in
ecological segregation of the sexes (Illius & Gordon, 1987; Ruckstuhl &
Neuhaus, 2002).

Primates, however, are quite variable in terms of sexual dimorphism rang-
ing from monomorphic species such as Callicebus torquatus to highly di-
morphic species such as Pongo pygmaeus, in which males may be more than
twice as large as females (Smith & Jungers, 1997). In species with partic-
ularly high levels of sexual dimorphism (male body mass > 160% female
body mass), energetic costs of large males may in fact exceed those of fe-
males even when the high energetic demands of female reproduction are
accounted for (Key & Ross, 1999). Unlike ungulates, primates encompass a
variety of dietary guilds including insectivory, frugivory and folivory (Flea-
gle, 1999).

Despite specific dietary needs, primate species typically select for foods
high in energy (Conklin-Brittain et al., 1998) and protein (Barton & Whiten,
1994). Ripe fruit often serves as a high energy resource that is easily di-
gestible whereas leaves are typically lower in sugars but are an important
source of protein and are abundant in the environment. Insects are high in
protein and may contain high levels of energy per unit weight. According to
Kay (1984), large primates will tend to supplement a fruit based diet with
more folivorous items as they will be more efficient at extracting available
energy and protein, whereas small primates will be more likely to incorpo-
rate insects into their diet as they will be better able to utilize the nutrients
available in these small prey (Kay, 1984; Leigh, 1994). If larger animals are
able to feed more efficiently on lower quality items but have higher absolute
requirements, it follows that they will also have to devote relatively more
time to feeding in order to obtain sufficient energy, as compared to smaller
animals.

If body mass does indeed play a significant role in the overall ecological
niche of an organism, increasing degrees of body mass dimorphism should
result in increasing levels of niche separation between males and females.
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Therefore, the aim of this study is to investigate the relationship between
body mass dimorphism and aspects of a species’ dietary behavior, specif-
ically sex differences in (1) feeding time, (2) leaf intake, (3) invertebrate
fauna intake and (4) fruit intake. We predict that as the degree of body mass
dimorphism increases across species, differentiation in male—female feeding
behavior should also increase. This relationship is expected because males
should consume more leaves and less fruit and fauna in their diet as they get
bigger. If size dimorphism and sex differences in feeding are measured as
a ratio of male to female values, we expect to find a positive correlation be-
tween size dimorphism and sex differences in folivory (because bigger males
eat more leaves than females) and a negative correlation between size dimor-
phism and faunivory and frugivory (because bigger males eat proportionally
less fruits and insects than females).

Methods
Data collection

Data were compiled from the published literature and personal communica-
tion with field researchers (Appendix A). Data were obtained for both males
and females from a total of 38 primate species, yet not all of the desired
data were present for all species. Therefore, different species are included
in different analyses depending on the completeness of the available data.
Body mass data for both sexes were obtained from Smith & Jungers (1997)
for all species, except for chimpanzees living in Gombe, Tanzania. The data
concerning the Gombe chimpanzees were reported by Wrangham & Smuts
(1980) and are used in this analysis. For the dietary data, the goal was to in-
clude variables that best captured any existing differences between the sexes,
while also being commonly reported in the literature. Therefore, four depen-
dent variables were gathered for males and females: (1) the percent of time
spent feeding, (2) the proportion of leaves in the diet, (3) the proportion of
fauna in the diet and (4) the proportion of fruit in the diet.

For Gorilla gorilla, Pongo pygmaeus, Pan troglodytes, Chlorocebus
aethiops, Procolobus badius and Varecia variegata data were available for
more than one site and/or time period. The mean value for the species was
used in the analyses.
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Data analyses

Although we are interested in the relationship between body mass dimor-
phism and male—female differences in feeding in this paper, we need to
account for the possible effect of body mass itself. Previous studies have
suggested that there is higher body mass dimorphism in large primate
species compared to small ones (Clutton-Brock et al., 1977; Leutenegger
& Cheverud, 1985; Mitani et al., 1996). Therefore, to examine the indepen-
dent effects of body mass and body mass dimorphism, we included female
body mass and body mass dimorphism as predictor variables in all multiple
regression models, using both species values and independent contrasts.

To calculate the degree of sex dimorphism, each variable was converted
to a ratio, and then log;¢ transformed (Smith, 1999). Since all species do not
have a complete data set, different sets of species were included in the regres-
sions. For all regressions, studentized residuals were calculated to detect po-
tential outliers that may produce spurious results. We defined outliers as sam-
ples that exhibited studentized residuals of 2.70. If outliers were detected,
they were removed from the dataset and the regression was subsequently re-
analyzed. Because feeding ecology variables are related to each other, the
alpha level for each regression was adjusted after implementing sequential
Bonferroni corrections (Rice, 1989). Therefore, with this method, the alpha
level of the regression yielding the lowest p value was set at 0.0125, the re-
gression that exhibited the next lowest p value had an o value of 0.0167,
with the third and fourth regressions using alpha « of 0.0250 and 0.0500,
respectively.

All regressions and correlations were conducted with Statistica 6.0.

Analyses using species values

The first set of analyses used species values. Least square multiple regres-
sions were performed (Sokal & Rohlf, 1995) to examine the possible rela-
tionship between the two independent variables, female body mass and body
mass dimorphism, and the dependent variables, male—female differences in
(1) percent time spent feeding, (2) percent fauna, (3) percent leaves and (4)
percent fruit.
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Analyses using phylogenetically independent contrasts

In addition to employing regression analyses on the species data, another
set of regressions were performed using phylogenetically independent con-
trasts. Since this paper is investigating patterns across numerous taxa, phy-
logenetically independent contrasts were used to attempt to minimize the
non-independence of data due to species evolutionary relationships (Felsen-
stein, 1985; Harvey & Pagel, 1991). The independent contrasts were calcu-
lated using the PDAP module for Mesquite (Midford et al., 2003; Maddison
& Maddison, 2007). This software is based on Felsenstein’s (1985) method
for computing phylogenetically independent data. The phylogeny and branch
lengths (based on estimated divergence times between taxa) were obtained
from a recent mammal phylogeny presented by Bininda-Emonds and col-
leagues (2007) (see Appendix A).

Generating phylogenetically independent contrasts relies on bifurcating
branches, yet a fully resolved phylogenetic tree is rare when numerous taxa
are involved. Most commonly, researchers choose the method of producing
only one contrast at a multifurcating node. Alternatively, Garland & Diaz-
Uriate (1999) suggest that more statistical power is obtained when poly-
tomies are arbitrarily resolved using zero branch lengths. To account for
Type I error rate inflation from this method, subsequent regression analyses
should include a reduction in the degrees of freedom based on the number of
zero branch lengths in the phylogeny. They propose that a range of p values
should be presented, a minimum p value based on the no degrees of freedom
modification, and a maximum p value resulting from reducing the degrees
of freedom. We follow this latter approach in our paper.

An important assumption of the phylogenetically independent contrasts
method is the lack of relationship between the branch lengths and the ab-
solute values of the standardized contrasts (Nunn & Barton, 2001). The
PDAP software has a test for this assumption and has several branch length
transformation schemes to potentially better meet the assumption. If any
variable failed the assumption test, we implemented the two most common
branch length transformations, equal branch lengths, and Nee transformed
branch lengths. We will present the results using all branch length schemes
as this essentially provides a sensitivity test of our results.

All regressions using the contrast data were conducted with the regression
line through the origin. This is necessary when using PICS data since the
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expected value of a contrast is zero (Garland Jr., 1992; Nunn & Barton,
2001).

Results
Regressions using species values

Using species vales, the regression examining the male—female ratio of fauna
in the diet was not statistically significant (p = 0.139), yet an outlier existed
in this analysis (Cercopithecus petaurista). When this outlier was removed
the model was statistically significant at the 0.003 level, with body mass
dimorphism being negatively correlated with sex differences in the amount
of fauna in the diet (Figure 1). The negative relationship between these two
variables indicates that as body mass dimorphism increases, the ratio of fauna
in the diet decreases because females are consuming more fauna than males.
The models examining male—female feeding time, and the percent of leaves
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Figure 1. Plots of the relationship between body mass dimorphism and male—female dif-
ferences in the percent of fauna in the diet. This plot does not account for female body mass
itself. The highlighted data point is the species Cercopithecus petaurista.



1218 Kamilar & Pokempner

Table 1. Results of multiple regression models examining the effects of
female body mass and body mass dimorphism on male—female differences
in feeding ecology using species values.

Dependent variable Multiple r2 df F P

Fauna 0.188 19 2.194 0.139
Fauna?® 0.482 18 8.376 0.003
Leaves 0.131 21 1.584 0.229
Fruit 0.174 21 2.215 0.134
Feeding time 0.074 25 0.995 0.384

4Model without the outlier, Cercopithecus petaurista, studentized residual >3.4.

Table 2. Independent effects of predictor variables examining male—female
difference in feeding ecology using species values.

Dependent Intercept Female body mass Body mass dimorphism
variable
p B p B p

Fauna 0.450 0.084 0.753 —0.480 0.084
Fauna® 0.040 0.224 0.315 —0.811 0.001
Leaves 0.002 0.377 0.144 —0.407 0.117
Fruit 0.032 —0.018 0.940 0.426 0.080
Feeding time <0.001 —0.058 0.803 0.299 0.206

4Model without the outlier, Cercopithecus petaurista, studentized residual >3.4.

and fruit in the diet did not yield statistically significant results (Table 1).
In all of the analyses, female body mass was not a significant predictor.
The independent effect of body mass dimorphism was the only significant
variable in the model predicting the male—female ratio of fauna in the diet
(Table 2).

Regressions using phylogenetically independent contrasts

Most variables failed to meet the branch length vs. standardized contrast
assumption using the estimated branch lengths. Using the Nee transformed
branch lengths, three variables failed to meet the assumption test, log female
mass (p = 0.003), log feeding time ratio (p = 0.001), and the ratio of
percent leaves in the diet (0.020). Using equal branch lengths produced the
best results, with only two variables failing the assumption test, log female
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mass (p = 0.013) and log feeding time ratio (p = 0.002) (see Appendix).
We attempted additional branch length transformation methods, yet these
two variables did not meet the assumption in any case.

Using phylogenetically independent contrasts, the multiple regression
model explaining male—female difference in the amount of fauna in the
diet was statistically significant using estimated and Nee transformed branch
lengths (p = 0.003-0.008). Using equal branch lengths the total model was
significant at the p = 0.0158-0.018 level. In each analysis an extreme out-
lier existed (Cercopithecus petaurista vs. Cercopithecus cephus vs. Cerco-
pithecus ascanius). Reanalyzing these data without the outlier produced a
significant model at the <0.001 level under all branch length methods (Fig-
ure 2a and Table 3). The strength of the relationship between body mass
dimorphism and male—female differences in the percent fauna in the diet is
further emphasized by two important findings. The first finding is related
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Figure 2. Plots of the relationship between body mass dimorphism and (a) male—female

differences in the percent of fauna in the diet, and (b) male—female differences in time spent

feeding, using phylogenetically independent contrasts and equal branch lengths. When using

phylogenetically independent contrasts, all best fit lines pass through the origin. These plots

do not account for female body mass itself. The highlighted data point is the contrast (a) Cer-

copithecus petaurista vs. Cercopithecus cephus vs. Cercopithecus ascanius and (b) Erythro-
cebus patas vs. Chlorocebus aethiops.
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Figure 2. (Continued.)

to the relative importance of each predictor variable (Table 4). Female body
mass is not a significant predictor of sex differences in fauna consumption. In
contrast, body mass dimorphism is significantly related to male—female dif-
ferences in the percent of fauna in the diet, with or without outliers included
in the dataset. Second, the importance of body mass on fauna consumption is
confirmed by a significant negative relationship between female body mass
and female fauna consumption (estimated branch lengths, p = 0.033; equal
branch lengths, p < 0.001; Nee transformed branch lengths, p < 0.006).
Therefore, as body size increases across species, fauna consumption de-
creases.

The multiple regressions predicting male—female differences in the per-
cent of leaves and fruit in the diet yielded statistically non-significant results
using all branch length methods, and even when outliers were removed. Fi-
nally, the initial multiple regressions examining male—female differences in
time spent feeding did not yield statistically significant results, yet one out-
lier was present (Erythrocebus patas vs. Cercopithecus spp. using equal and
Nee transformed branch lengths, and Cebus olivaceus vs. Cebus capucinus
using estimated branch lengths). When the outlier was removed, a positive
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relationship was found at the p = 0.018 to 0.021 level using both equal
and Nee transformed branch lengths (Figure 2b and Table 3). These values
approached statistical significance once the sequential Bonferroni correction
is taken into account, with our accepted significance level for this test be-
ing 0.0167. Examining the relative effect of each independent variable for
predicting sex differences in feeding time illustrates the importance of body
mass dimorphism. Using both equal and Nee transformed branch lengths,
there was a significant positive relationship between body mass dimorphism
and sex differences in feeding time (p < 0.008) (Table 4). This relationship
was weaker using estimated branch lengths, yet this may be due to the vi-
olation of the statistical assumption relating branch lengths to standardized
contrast values. It is also important to note that in all cases there was little
relationship between female body mass itself and sex differences in feeding
ecology (Table 4).

The outliers are due to differences between closely related species that
exhibit patterns contrary to those of the overall pattern. This may be the result
of real biological differences among closely related taxa or measurement
error in the data (Nunn & Barton, 2001) with the latter explanation being
more common for outlier contrasts at the tips of the phylogeny. In this case,
C. petaurista displays similar levels of body mass dimorphism to C. cephus
and C. ascanius, yet males consume more fauna compared to females. It
is interesting to note that there were no outlier contrasts involving deeper
nodes (e.g., anthropoids vs. prosimians). This suggests that the patterns of
body mass dimorphism and male—female dietary niche separation are similar
across various primate lineages (i.e., grade shifts do not exist) despite the
relatively high degree of ecological diversity within primates (Fleagle, 1999).

Discussion

Once outliers were removed from the dataset, this study reveals that body
mass dimorphism is related to intraspecific primate dietary diversity in terms
of male—female differences in the degree of faunivory and in the percent-
age of time feeding. The regressions examining male—female difference in
the amount of fauna in the diet are consistent using species values or phy-
logenetically independent contrasts, where the results of sex differences in
feeding time are only significant once evolutionary history is taken into ac-
count. The results of the phylogenetic analyses should be most emphasized
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since our dataset is not evenly distributed among clades. For instance, in the
analysis examining sex differences in feeding time, data for 28 species were
included. Of these 28 species, three were from the entire suborder Prosimii,
whereas four species were from a single genus, Alouatta. Therefore, treating
these sampling units as independent data points would place equal weight on
each species, which would be statistically invalid.

The relatively high level of faunivory among the smaller females is likely
the result of a combination of factors influenced by body size, including
increased physical dexterity of smaller individuals as well as the need of
smaller animals to rely on high quality foods. Likewise, patterns in overall
time spent feeding fit with the predictions of body size dimorphism, with
larger animals spending relatively more time feeding. This relationship is
particularly driven by species characterized by high levels of sexual dimor-
phism (Gorilla sp., Pongo sp.). These results lend support to the findings of
Key & Ross (1999), which suggest that effects of body size may supersede
those of female reproduction in species with extreme mass dimorphism. The
importance of body mass for influencing the amount of fauna in the diet of
species is emphasized by the phylogenetic analyses examining sex specific
mass and fauna consumption (as opposed to sex differences in these traits).
The significant negative relationship between female mass and female con-
sumption of fauna supports the adaptive nature of the across-species varia-
tion in faunivory.

Interestingly, no significant relationship exists between body mass dimor-
phism and male—female differences in folivory or frugivory. This may be a
true biological phenomenon, yet it may also be due to our particular dataset.
A biological reason may be related to female reproduction. Although this
study does not account for variation in female reproductive status, lactation,
gestation and rearing offspring are particularly energetically demanding and
may affect foraging behavior and selectivity (Dufour & Sauther, 2002). Such
factors may mask sex differences in feeding time in species with low to mod-
erate levels of sexual dimorphism.

Alternatively, although our dataset is the most comprehensive compilation
to date, it is still relatively small, and may only be able to detect large
effects. More likely, the available dietary data were relatively gross in nature.
Therefore, the general fruit and leaf categories utilized may obscure the
importance of the phenological phase of these food items. On average ripe
fruit contains considerably more energy compared to unripe fruit. Similarly,
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young leaves often contain relatively high levels of protein and are more
easily digestible compared to mature leaves (Glander, 1982; Ganzhorn, 1992;
Aide, 1993). The variation within these dietary classes may be critical for
detecting differences between the sexes.

The relationship between diet and body size in primates may also be
influenced by variation in dietary specialization. In a comparative study of
large herbivores, Mysterud (2000) found that sexual dimorphism was only
positively correlated with ecological segregation in browsers as opposed to
intermediate feeders and grazers. For primates, species vary in their gut
morphology and, thus, their efficiency in extracting nutrients from fibrous
resources, regardless of body size. For instance, while the mantled howler
monkey (Alouatta palliata) is able to subsist on a highly folivorous diet due
to a gut specialized for caeco-colic fermentation, the similarly sized spider
monkey (Atles geoffroyi) is characterized by a relatively simple gut and, thus,
must rely on fruit for its primary source of energy (Milton, 1981). Although
we did not quantify the dietary niche of primate species in our analyses,
dietary specialization has a strong phylogenetic component. Our results did
not yield any of the expected grade shifts among different primate clades
(e.g., colobines vs. cercopithecines or Alouatta vs. Ateles), suggesting that
with our dataset, dietary specialization does not have a strong effect on the
relationship between body mass dimorphism and feeding ecology.

Most evidence points to sexual selection as being the major force causing
body size dimorphism in animals (Selander, 1972; Trivers, 1972; Clutton-
Brock et al., 1987). Alternative hypotheses to explain body size dimorphism
include niche separation (reviewed in Shine, 1989) and natural selection act-
ing in a sex specific manner (Gordon, 2006). Several non-primate studies
have examined intersexual differences in morphology and its ramifications
for dietary niche separation. An elegant study of carpet pythons (Morelia
spilota) by Pearson and colleagues (2002) showed that the degree of sex-
ual dimorphism varied among five geographically separated populations. Fe-
males grew to a larger size and exhibited relatively larger heads compared to
males in areas where large prey was available. The authors suggest that the
variability in body size dimorphism was the results of prey size variation
in different habitats. In another study, an examination of mink carcasses by
Thom et al. (2004) showed that the degree of sexual dimorphism in anatom-
ical structures related to feeding was greater compared to traits unassociated
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with prey size. These results imply that the benefits of intersexual niche sep-
aration may maintain or increase dimorphism in the feeding apparatuses of
minks. In primates, a community level study simultaneously focused on sev-
eral closely related sympatric forest guenons (Cercopithecus spp.) supports
the idea that body size is intimately tied to an animal’s ecological niche and
that this may affect the degree of niche separation between species’ sexes.
This research showed that females of different species were more ecolog-
ically similar to one another than any were to males of the same species
(Gautier-Hion, 1980). These species tend to exhibit moderate levels of body
size dimorphism, where males of different species exhibit more similar body
sizes compared to conspecific females, with body size variation impacting
diet and microhabitat preferences.

Although the results of this current study may appear to support the niche
separation hypothesis, niche separation influenced by body size dimorphism
could also arise as a byproduct of sexual selection. In primates, sexual selec-
tion is an important force in shaping various morphological and behavioral
traits (Mitani, 1985; Plavcan & van Schaik, 1997; Nunn et al., 2001; Palom-
bit et al., 2001). For instance, canine size dimorphism is well known in many
primates and is largely due to male—male competition for females (Plavcan et
al., 1995). Therefore, sexual selection may be the initial cause of body mass
dimorphism, with male-female differences in ecology being a secondary ef-
fect.

A more complex picture emerges when dietary patterns are considered
in the context of social relationships. For instance, the effect of body size
on feeding behavior and access to resources may also be confounded by the
effects of social dominance as body size may influence rank and vice versa
(Pelletier & Festa-Bianchet, 2004). If sexual dimorphism arose as a result
of a competitive ‘arms race’ among males, a by-product of such increased
intrasexual competitive ability may also translate into increased intersexual
competitive ability in regards to access to resources. For instance, larger
individuals may have a competitive advantage over smaller ones, where it
is, therefore, difficult to tease the social and physical effects of dimorphism
apart. In addition, aggressive behavior that is independent of the individual’s
body size may lead to a high ranking status and, therefore, influence the
ability to exploit food resources (Janson, 1985).

In conclusion, while many factors may affect sex differences in feeding
ecology in primates, this study shows that body mass dimorphism may be
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particularly important when considering differences in fauna feeding as well
as overall feeding time in species characterized by high levels of dimor-
phism. Establishing such relationships provides a useful tool in interpreting
the intraspecific ecological diversity of extant animals. The connection be-
tween body mass dimorphism and male—female niche separation may have
important implications for several aspects of a species’ biology. The ex-
ploitation of different food resources between males and females of sexually
dimorphic species may reduce intragroup competition for food, which may
in turn have ramifications for inter-individual social relationships and group
size. In addition, the broader niche space occupied by dimorphic taxa may
be detrimental in fragmented or degraded habitats, where resources are more
limited. Under this scenario, these species may be at more risk of population
decline.
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Kamilar & Pokempner

Table A2. Significance values of least square regressions between branch
lengths and standard deviation of contrasts.

Variable Real branch lengths Equal branch lengths Nee

log female mass 0.002 0.013 0.003
log body mass ratio 0.039 0.177 0.233
log feeding time ratio 0.006 0.002 0.001
log fruit ratio 0.488 0.313 0.997
log leaf ratio 0.035 0.302 0.020
log fauna ratio 0.049 0.151 0.076
log female feeding time 0.130 0.304 0.333
log female fruit 0.486 0.498 0.487
log female leaf 0.303 0.534 0.507
log female fauna 0.511 0.487 0.516




